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Passage through a barrier with a slowly increasing control parameter
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A bistable system subjected to noise and a slow increase of the parameter controlling the instability is
studied, with emphasis on the kinetics of the transitions across the barrier separating the stable states. It is
shown that the presence of a ramp in the control parameter may considerably affect the distribution of
probability mass on the two sides of the barrier as compared to the predictions of the classical Kramers theory.

PACS numbegps): 05.40—-a, 05.10.Gg

I. INTRODUCTION As is well known, in the absence of noise and for 0
the dynamics generated by E@$) and(2) gives rise to three
Transitions between simultaneously stable states sep#variant sets: the unstable fixed poixg=0, and the two
rated by a barrier and induced by intrinsic fluctuations or bybasins of attractiori—c, 0) and (0, ) of, respectively, the
external noise are one of the most representative problems fixed pointsx_=—\"? and x, =A*2 In the presence of
the interface of nonlinear science and stochastic processeamoise this invariance is abolished, and one observes transi-
They arise in a wide variety of contexts, from electronictions between the two basins. In the limit in which the noise
circuits to chemical kinetics, earth sciences, and biologyis weak and the two deterministic stable states are well sepa-
[1,2]. rated, these transitions occur on a characteristic time scale
Ordinarily, following Kramers’s pioneering contribution given by the Kramers formula
[3], the problem is mapped onto a Langevin equation with a 5
nonlinear deterministic part and additive white noise or, . " " 12
equivalently, onto a diffusion process governed by a Fokker- 7= 7 = U () U (x4 eXF{TALh}’ ®)
Planck equation with nonlinear drift and constant diffusion
coefficient. In the simplest setting of a single variaklad- ~ WhereU(x) is the kinetic potential

mitting in the noiseless limit two stable solutions separated o 4
by an intermediate unstable one, these equations read U(x)=—x X_+ x (43)
2 4
dx 3
qi M TXHE(, (1@  andAU. the potential barrier
)\2
(F())=0(F(OF(t"))=g5(t—t") (1b) AU =U(x) = U(xx)= . (4b)

(Langevin equation The conditions of the validity of these results are summa-

and rized by the inequalitAU . >q2/2.
p 9 o 2 Typically, in the above studies, the control parametés
— = — (A=)t = —, (2)  held fixed during the evolution of the variable Now, in
X X 2 9x many real world situations this is unrealistic in view of the
variability and complexity of the environment in which a
(Fokker-Planck equation given system is embedded. In particular, it may happen that

N\ describes the effect of a constraint that is gradually

In writing Egs. (1) and (2) we used the generic form of gyjitched on during the evolution of the variabiea situation
supercritical pitchfork bifurcatior{4], for which a single usually referred to as emp

control parameten is sufficient to unfold the full set of

possible behaviors. A different situation pertains to hyster- A=\otet, e<l. (5

esis for which a second control parameter, accounting for the

effect of an imperfection in the above generic form, is nec-The effect of such ramps on the deterministic dynamics has
essary. Although the analysis reported in this paper carriegeen the subject of several investigations in the context of
through in this case as well, in what follows we shall focusnonlinear optic§5] and reaction-diffusion systenf§]. The

on problems in which the noisele&deterministi¢ dynamics  influence of noise on the dynamics around the unstable point
is amenable to a supercritical pitchfork bifurcation. Xo=0 has also been analyzgd-9]. In the present study we
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report results concerned with the full, nonlinear system—Since the integral in the denominator converges rapidly to
Egs.(1) and(2) in the presence of both noise and a ramp insome limiting value, Eq(8) shows thax(t) is bounded for
the form of Eq.(5)—with emphasis on the kinetics of tran- long times byC,(et)*?, whereC, is a(generallye depen-
sitions across the barrier. denb constant.

In Sec. Il the principal effects of the ramp on the deter- To arrive at a sharper result and to also study the tran-
ministic dynamics are compiled. The stochastic dynamics irsients prior to this long time evolution, we now seek pertur-
the presence of the ramp is formulated in Sec. Ill. The anabative solutions of Eq(6). Two situations need to be envis-
lytic results obtained are evaluated in Sec. IV and comparedged, depending on the initial conditions.
with the results of the direct numerical solution of the Lange-
vin and Fokker-Planck equations. The main conclusions are

. . A. Initial conditions near x.== g
summarized in Sec. V.

Let us setr=Ay+et, with A\;>0. Equation(6) becomes

II. DETERMINISTIC DYNAMICS IN THE PRESENCE dx
OF A RAMP sd—zrx—x3. 9)
T
In this section we are concerned with a dynamical system
described by the evolution equation We seek solutions of the form
dx
= (ot st)x—x3. (6) x=x0+ex® - (10)

Substituting into Eq(6) and identifying equal powers af
one obtains(for concreteness we limit ourselves, without
loss of generality, to states starting nean

The exact solution of this equation is
t2
x(t)=ex;{)\ot+s 5

x(0) = ;12— ()\0+st)1/2,
X0 7) (12)

t 7,2 172+ (
1+2X(2)f dTeXF{Z )\OT+8—)“ XD = ! =— 1
0 2 472 4()\0+st)3/2'

X

Its dependence of) Ay, ande is not very transparent. Inter-
esting information may nevertheless be obtained by applyin
the Hdder inequality,

otice thatx(?) cancels the right hand side of E(@). We
hall therefore refer from now on to this part as Hukabatic
approximation
t t al rt B Expansion(10) limits us to initial conditions less than
deTfagB$( deTf) (deTg) A2 Figure 1 depicts thedependence of the dominant part
x(©) of the analytic solution(dashed ling along with the

Settinga=B=3%, f=exp{2\o7+&(7%2)]}, g=1, and taking result of the integration of Eq6) with a typical initial con-

the limit of long times one obtains dition x(0)<A§"? (full lines) and an initial condition(dots
matching expansiofiLl0). The agreement is very satisfactory
s 1 except for a short initial layer for the case of unmatched
X(t)=(et) T o : initial conditions. This layer depends very weakly eand is
J dfexr{ — (Y4 — &) — 2(et?— 52)} essentially determined by the value Xf.
0 &
(8) 1.06 . .
X
1;: I ' ' ' _ = 105 |
P - 104
1.02 + _ =~
_ 5 5= 103 |
VT
1.02
0.98 - 1 101 b
0.96 L 1
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FIG. 2. As in Fig. 1 but for initial conditiong(0)>\,. Domi-
FIG. 1. Time dependence af for initial conditions x(0)  nant part of the solutiox(® (dashed ling exact solution of the
<\§%. Dominant part of solutiox®, Eq.(10) (dashed ling nu- linearized equatiorf12) for the excess variable with x=z+ A3
merical solution of Eq.(6) with x(0)=\3?—e(1/M\3?) (dotted  (dotted ling; and numerical solution of Eq6) (full line). Initial

line) andx(0)=0.95 (full line). Parameter values,=1, ¢e=0.01. conditionx(0)=1.05.
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FIG. 3. As in Fig. 1 but for initial conditiong(0) close to zero.
Dominant part of solutionx(®) (dashed ling solution of the linear-
ized equation14) (dotted ling; and numerical solution of Ed6)
(full line) with x(0)=0.01. Parameter valuegy=1 (a), A\g=—1
(b).

To treat initial conditions slightly larger than}? it is
convenient to express E) in terms of the excess variable

z=x—\g?. One obtains

dz
— =N+ (st—2N\g)z— 3P 25

ai (12

We notice that in this representation the ramp is no longer

purely multiplicative as in Eq(6), but gives rise to an addi-
tive contribution as well.

Starting with z positive but close to zero, owing to the
stability of the “ghost” statez=0 in the limit e—0, one

expects for short times a tendency to decrease from this in

tial state, in order to reach=0 (or x=)\$’2). Sooner or later,

however, this transient crosses over with the dominant part

of the perturbative solution®), and follows thereafter the
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FIG. 4. Snapshots of the potentidl(x,t) corresponding to Eq.

(6). Parameter values as in Fig. 1.
T=gt—2\g. (13b)

In Fig. 2 this solution(dots is depicted, along with the
result of the integration of Eq(6), with the same initial
condition(full line) and the dominant part of the perturbative
expansionx(?) (dashed ling The evolution is in full agree-
ment with the previously drawn qualitative picture. The
crossover time is essentially the time it takes to reach the
minimum. For a given initial condition it diminishes
(weakly) as € is increased. We do not further address the
extension of the perturbative approach itself to match the
initial condition, as this type of problem has been analyzed in
depth in Ref[5].

B. Initial conditions near xo=0

Consider for concreteness, and without loss of generality,
a positive initial condition. Fok >0, owing to the instabil-
ity of the ghost state,=0 in the limite—0, one expects as
before, for short times, a tendency to evolve towagf,
which will entail in the present case an increase of the initial
value ofx. This initial tendency can be determined from the
linearized version of Eq6), whose solution reads

. (14)

2
x(t)=x(0)exp{()\0t+ %)

Eventually this transient will cross over witi®) and follow
thereafter the characteristic square-root-g@volution of Fig.
1. The crossover timg* can be estimated by the relation
t* 2
)\0t* +e 7) . (15)

()\0+st*)1’2~x(0)ex;{

same type of evolution as in Fig. 1. The dynamics prior to
the crossover can be analyzed from the linearized part of EQ. In Fig. 3(a) the early time evolution given by Eq14) is

(12), whose exact solution is easily found to be

©_ 72 2)\3 [ ar ; T

Z'=eX Z ex —T Z er \/?

exp — | —exp—
2¢e >

(139

with

plotted in dots along with the numerical solution of the full
nonlinear equatior(6) (full lines) and x(°) (dashed lines
The results corroborate the above qualitative picture, includ-
ing the estimate of the crossover time, Ep).

Figure 3b) depicts the result of the numerical integration
of Eq. (6) for \o<O (full line) along with those of Eq(14)
(dot9 andx(® (dashed lines The unexpected feature is the
extra delay, first discovered by Erneux and Mari&g] dur-
ing which the system stays in the vicinity &f=0 before
jumping, superexponentially, towandt?). The delay time
corresponds to the time necessary to build a positive expo-
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nent in Eq.(14), and is thus given byty=2|\¢|/e. The P ' ' ‘ ' '
crossover timg* is still given by Eq.(15), the difference
t* —tq being the duration of the jump.
0.08
Ill. STOCHASTIC DYNAMICS IN THE PRESENCE
OF A RAMP

We come now to the main objective of our study, namely, 004

to analyze the dynamics of the fluctuations in the presence of
the ramp Eq. (5)]. This amounts to augmenting E@) with

a noise term subject to conditiogh), 0
dx AU(x,t) E 16 2 -1 0 1 2 x

whereU(x,t) is the extended form of the kinetic potential T - ' - '

accounting for the ramp P b
0.2 + J
x2 x4
U(X,t):_()\0+8t)?+ Z a7 i
The probability densityp(x,t) satisfies then the augmented 01

Fokker-Planck equation

p 0 o 97 %p _ /\
E——&[()\(ﬁst)x—x ]p+7m (18 o

An elegant analysis of the various stages of the transient -2 - 0 1 2 x
behavior of the probability densitg(x,t) in the absence of
ramp has been developed by Suzl0|. Rather than try to
extend Suzuki's approach when a ramp is introduced, we ' ' ' ' ’
here limit the scope of our study to the long time regime in
which the only relevant process is the transfer of probability 04T
mass across the potential barrier.

We first study the structure of the potentld(x,t). We
still have three extrema, just as in the case0 [Eq. (4a)],

two of which depend now on 02
XOZO,
(199
Xt:i\/)\o'f'é‘t. 0
Notice thatx. is just the partx(®) of the solution of the 2 -1 0 1 2 X

deterministic equation referred to in Sec. 2 as the adiabatic
approximation.
The corresponding values of the potential are

FIG. 5. Probability distribution in the limit of long times ob-
tained numerically from Eq(18) with \g=1, e=10"*, and g?
=0.12(a); g>=0.08 (b); andg?>=0.06 (c).

u(0)=0, o .
(19b) the transitions across the barrier. We are thus led to the sto-
U.(t)=—2(\o+et)? chastic version of the adiabatic approximat{dnl1],
leading to a potential barrier P(X,H=N_()d_(X,1) +N (D), (x,t). (209
AU, (t)=3(Ng+et)2 (1990  The form of ¢ is obtained by expanding(x,t) around

) _ X- , keeping only the first nontrivialhere quadraticterm,
Figure 4 depicts two snapshots bf(x,t) for t=0 andt

>0. We observe that as time grows the minima move away 2(Np+et) 2(Ngt+et){x—[+(Ng+et)]}?
from x,=0 and become, at the same time, deeper. If thed="\/ ) ex;{— 2 )
noise strengthy? is reasonably small one may therefore ex- g g
pect that in the regime of long times and in the spirit of (20b)
Kramers’s approachEgs. (3) and (4)], p(x,t) will essen-

tially be given by two local Gaussians centeredorn(t), showing that, as time goes o#i,- becomes increasingly nar-
whose weights\ . (t) will be slowly varying as a result of rower around its extremunt (A o+ &t).
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FIG. 7. Sensitivity of the asymptotic value of the excess prob-
08 L _ ability masséN., on the noise strength? and on the rate of the
ramp € as obtained from Eq25). Parameter values,=1 and an

initial probability distribution peaked on one basi#\(0)=0.5.

04 | 1 d5N_ 1

ﬂ-ﬂ—LLD_ﬁ_ﬂ.ﬂ.LLOJJ 2 e o 0. 0 0 0 . a.of dt __W(SN, (22)
,’y where 7(t) is formally given by Eq.(3), in which U, AU
ot . . . . ] now account for the presence of the ramp. Combining this
0 2000 4000 6000 8000 t with Egs.(19), one thus gets
v2
7Yt~ ?(>\0+8t)e—mo+8“2/2q21. (23)
N, ' ' ' ¢
[o—e—o- . . .
Equation(22), when subject to expressid@3) for 7, can
08 | be integrated exactly, yielding
ON(t)=6N(0 v2a )\S
()=0N(0)exp — — | ex BT
04 - )
()\0+ St)
—ex;{ - Z—qz . (249
o T In the limit e—0, differentiating the second exponential in
0 5000 10000 15000 t the overall exponent with respect soand settinge =0 one

obtains(as one shouldthe classical Kramers result, EG).

FIG. 6. Time evolution of the probability masses around the twoMore unexpected is the fact that in the liri 1/e this same
basinsN . (full line) andN_ (dashed lingas obtained numerically ~€xponential tends toward zero and one obtains

from Eq. (18) with initial condition N, (0)=1, N_(0)=0. Empty 5 o \2
circles correspond to the analytical result, E24). Parameter val- : _ _ _ _2 9 Mo
ues as in Fig. 5. tIch ON(1)=ON.,= SN(0)ex ex 209°

25
We turn next to the dynamics of the weighh. (t), @9
which carry the interesting information concerning the tran-In other words, contrary to the Kramers case, equipartition

sitions across the barrier. In order to disentangle the transiefiiranslated bySN—0) is not always achieved: the system
behavior from an initial state favoring, or x_, from the  may remain blocked in one of the quasiattraction basins, de-
equipartition case in which the two quasiattraction basins argending on its initial preparation.

given the same probability mass and hence there is no further

evolution, we set IV. NUMERICAL EXPERIMENTS

N_(t)=3 = SN(t). (21 The results reported in the preceding section will now be
confronted and complemented by those of the numerical so-
The excess probability mas#\(t) obeys then, in the adia- lution of the Fokker-Planck equatiqi8) and the stochastic
batic approximation to which our study is limited, the rate simulation of the Langevin equatidi6).
equation[1,11] Figures %a)—5(c) depict the numerically computed prob-
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' ' ' wherea= 6N, /SN(0) and the LambeiV function W(x) is
defined byW(x)exgW(x)]=x. This is summarized in the
“state diagram” of Fig. 7 withéN(0)=0.5.

In order to see how the variabbgt) itself evolves in
time, we perform a simulation of the Langevin equatitf).
Figures &a) and 8b) depict two types oftochastic trajec-
tory obtained by this simulation. In Fig.(&, corresponding
to parameter values,=1, e=10 3, andg®=0.08, we see
that, starting from an initial condition in one or the other
quasiattraction basins, the system remains blocked in this
basin for all subsequent times, performing no transition
across the barrier whatsoever. The situation is different in
Fig. 8b), corresponding to the parameter values of Fig).5
Starting initially in the left quasiattraction basin, the system
, : intermittently performs a number of transitions across the
oy barrier before eventually getting blocked in the right quasi-

I ] attraction basin. Realizations in which the blocking applies
. L L 1 i ‘ I to the starting quasiattraction basin have also been observed.
In addition to supporting further the conclusions based on
Egs. (24) and (25), these results are also in full agreement
with the comment made in Sec. Ill in connection with the
adiabatic approximatiori20a, namely, that as time grows
the system becomes increasingly localized in the immediate
‘ vicinity of one of the deterministic solutions. (t).

| ] It might seem curious at first sight that the parameter val-

; : s : ues in Fig. 8b) correspond to the case referred to in Figa)5

0 1000 2000 3000 4000 t as “equipartition.” This apparent paradox is resolved by re-
alizing that one needs to argue here in an ensemble theoretic
sense: starting witlN initial conditions(N large in the left
quasiattraction basin, half of the realizations generated will
get settled for long times in the right basin in the equiparti-
. o . o ) tion case. Still, a given realization will eventually become
ability distribution from Eq.(18) in the limit of long times,  p|ocked on relevant time scales, since the effective barrier
using the method developed in R¢12], for e=10"% and | keep increasing compared to théxed) value of o2,
for three different values of the noise strength In addition  thereby bringing the system effectively to the nonequiparti-
to the equipartition result of Fig.(&), which according to  tjgp regimes of Figs. ®)—5(c) and &b)—6(c). Notice that
classical Kramers theory should be the only one to prevail ifhere can be no question of the equality of time and ensemble

the Iimit of long times for systems pqssegsing a symmetri(‘a\,era(‘:]es here, since the system is not stationary.
potentialU aroundx=0, we observe situations where there

is a marked imbalance between the probability masses in the
two quasiattraction basing=ig. 5b)], or even an almost V. CONCLUSIONS

100% selection of one particular bagirig. 5(c)]. A differ- . o .
ent view of this result, which is in full agreement with the . In this paper, the kinetics of the passage through a barrier

conclusions arvd a n he preceding secon, s gven iff 2 DSIaNe System urdergong 8 supereica;pieniok
E:?)Zagﬁ)t; ?(ncgsslr;;rle(?)e ;ﬁ;' :\?_s(:??n;g;;; \;:)Jlr:?c,:ﬂ eorf]ut?e parameter controlling the bifurcation. It was shown that the
merical solution of Eq(18) are drawn in full and dashed ramp may considerably affect the distribution of probability

lines, respectively, for the three sets of parameter values gpass on the two sides of the barrier. An asymptotic expres-

Fig. 5. The empty circles stand for the numerically evaluate ion governing this d|§tr|but|on was der|v§Elqs..(24) and
analytic result of Eq(24) under the same conditions. The 25)] and shown to be in excellent agreement with the results

agreement is quite satisfactory, thereby establishing firml f simulations of the full Fokker-Planck equation associated

the existence of frozen regimes in which the transitions |t_r|1_hth|s SySt.ETt' f tically f . i
across the barrier are quenched. These regimes are very sen- € possibility of practically freezing a system, upon
sitive to the parameterg® ande. Indeed, the noise levef? minute changes of parameters on a preferred state by

necessary to achieve a certain valuesdf, for long times guenching at some stage, thro_ugh the_ ramp, the transitions
can be found from Eq24). It reads * across the barrier provides an interesting method of control

of the time evolution of multistable systems. This could be of

relevance in, e.g., nonlinear optics and semiconductor phys-
1 )\S ics related problems. The switching from the unstable state

9°=3 ( N2 ) , (26)  has been studied in great detail in such problEBig—9, but

-4 L 1 ; )
0 2000 4000 6000 8000 t

FIG. 8. Stochastic trajectory obtained numerically from Eq.
(16). Parameter values\,=1 and e=103, ¢?=0.08 (a); €
=104, ¢?>=0.12(b).

the long time regime associated with the passage through the
barrier had so far not been addressed systematically.
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A natural extension of this work is to consider bistable of the ramp could open new possibilities for enhancing and
systems with hysteresis, as well as systems giving rise toontrolling the sensitivity of complex systems toward envi-
periodic or chaotic oscillations. Another interesting situationronmental constraints.
to study pertains to the simultaneous presence of a periodic
forcing and a ramp. As is well known, under a periodic forc-
ing a noisy system is also experiencing a very different dis- ACKNOWLEDGMENT
tribution of probability masses on the two sides of the bar-
rier, associated with the phenomenon of stochastic resonance This work was supported by the Interuniversity Attraction
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