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Passage through a barrier with a slowly increasing control parameter
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A bistable system subjected to noise and a slow increase of the parameter controlling the instability is
studied, with emphasis on the kinetics of the transitions across the barrier separating the stable states. It is
shown that the presence of a ramp in the control parameter may considerably affect the distribution of
probability mass on the two sides of the barrier as compared to the predictions of the classical Kramers theory.

PACS number~s!: 05.40.2a, 05.10.Gg
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I. INTRODUCTION

Transitions between simultaneously stable states s
rated by a barrier and induced by intrinsic fluctuations or
external noise are one of the most representative problem
the interface of nonlinear science and stochastic proces
They arise in a wide variety of contexts, from electron
circuits to chemical kinetics, earth sciences, and biolo
@1,2#.

Ordinarily, following Kramers’s pioneering contributio
@3#, the problem is mapped onto a Langevin equation wit
nonlinear deterministic part and additive white noise
equivalently, onto a diffusion process governed by a Fokk
Planck equation with nonlinear drift and constant diffusi
coefficient. In the simplest setting of a single variablex ad-
mitting in the noiseless limit two stable solutions separa
by an intermediate unstable one, these equations read

dx

dt
5lx2x31F~ t !, ~1a!

^F~ t !&50,̂ F~ t !F~ t8!&5q2d~ t2t8! ~1b!

~Langevin equation!,
and

]p

]x
52

]

]x
~lx2x3!p1

q2

2

]2p

]x2 , ~2!

~Fokker-Planck equation!.

In writing Eqs. ~1! and ~2! we used the generic form o
supercritical pitchfork bifurcation@4#, for which a single
control parameterl is sufficient to unfold the full set of
possible behaviors. A different situation pertains to hyst
esis for which a second control parameter, accounting for
effect of an imperfection in the above generic form, is ne
essary. Although the analysis reported in this paper car
through in this case as well, in what follows we shall foc
on problems in which the noiseless~deterministic! dynamics
is amenable to a supercritical pitchfork bifurcation.
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As is well known, in the absence of noise and forl.0
the dynamics generated by Eqs.~1! and~2! gives rise to three
invariant sets: the unstable fixed pointx050, and the two
basins of attraction~2`, 0! and ~0, `! of, respectively, the
fixed points x252l1/2 and x15l1/2. In the presence of
noise this invariance is abolished, and one observes tra
tions between the two basins. In the limit in which the no
is weak and the two deterministic stable states are well se
rated, these transitions occur on a characteristic time s
given by the Kramers formula

t6'p@2U9~x0!U9~x6!#21/2expF 2

q2 DU6G , ~3!

whereU(x) is the kinetic potential

U~x!52l
x2

2
1

x4

4
~4a!

andDU6 the potential barrier

DU65U~x0!2U~x6!5
l2

4
. ~4b!

The conditions of the validity of these results are summ
rized by the inequalityDU6@q2/2.

Typically, in the above studies, the control parameterl is
held fixed during the evolution of the variablex. Now, in
many real world situations this is unrealistic in view of th
variability and complexity of the environment in which
given system is embedded. In particular, it may happen
l describes the effect of a constraint that is gradua
switched on during the evolution of the variablex, a situation
usually referred to as aramp,

l5l01«t, «!1. ~5!

The effect of such ramps on the deterministic dynamics
been the subject of several investigations in the contex
nonlinear optics@5# and reaction-diffusion systems@6#. The
influence of noise on the dynamics around the unstable p
x050 has also been analyzed@7–9#. In the present study we
197 ©2000 The American Physical Society



—
in
-

er

na
re
e
a

te

-
in

to

an-
ur-
-

ut

rt

ry
ed

198 PRE 62C. NICOLIS AND G. NICOLIS
report results concerned with the full, nonlinear system
Eqs.~1! and~2! in the presence of both noise and a ramp
the form of Eq.~5!—with emphasis on the kinetics of tran
sitions across the barrier.

In Sec. II the principal effects of the ramp on the det
ministic dynamics are compiled. The stochastic dynamics
the presence of the ramp is formulated in Sec. III. The a
lytic results obtained are evaluated in Sec. IV and compa
with the results of the direct numerical solution of the Lang
vin and Fokker-Planck equations. The main conclusions
summarized in Sec. V.

II. DETERMINISTIC DYNAMICS IN THE PRESENCE
OF A RAMP

In this section we are concerned with a dynamical sys
described by the evolution equation

dx

dt
5~l01«t !x2x3. ~6!

The exact solution of this equation is

x~ t !5expS l0t1«
t2

2 D
3

x0

H 112x0
2E

0

t

dt expF2S l0t1«
t2

2 D G J 1/2. ~7!

Its dependence ont, l0 , and« is not very transparent. Inter
esting information may nevertheless be obtained by apply
the Hölder inequality,

E
0

t

dt f agb<S E
0

t

dt f D aS E
0

t

dt gD b

.

Settinga5b5 1
2 , f 5exp$2@l0t1«(t2/2)#%, g51, and taking

the limit of long times one obtains

x~ t !<~«t !1/2
1

E
0

«1/2t
dj expF2

l0

«1/2~«1/2t2j!2 1
2 ~«t22j2!G .

~8!

FIG. 1. Time dependence ofx for initial conditions x(0)
,l0

1/2. Dominant part of solutionx(0), Eq. ~10! ~dashed line!; nu-
merical solution of Eq.~6! with x(0)5l0

1/22e(1/4l0
3/2) ~dotted

line! andx(0)50.95 ~full line!. Parameter valuesl051, e50.01.
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Since the integral in the denominator converges rapidly
some limiting value, Eq.~8! shows thatx(t) is bounded for
long times byC«(«t)1/2, whereC« is a ~generallye depen-
dent! constant.

To arrive at a sharper result and to also study the tr
sients prior to this long time evolution, we now seek pert
bative solutions of Eq.~6!. Two situations need to be envis
aged, depending on the initial conditions.

A. Initial conditions near xÁÄÁAl0

Let us sett5l01«t, with l0.0. Equation~6! becomes

«
dx

dt
5tx2x3. ~9!

We seek solutions of the form

x5x~0!1«x~1!1¯ . ~10!

Substituting into Eq.~6! and identifying equal powers of«
one obtains~for concreteness we limit ourselves, witho
loss of generality, to states starting nearx1!

x~0!5t1/25~l01«t !1/2,
~11!

x~1!52
1

4t3/252
1

4~l01«t !3/2.

Notice thatx(0) cancels the right hand side of Eq.~9!. We
shall therefore refer from now on to this part as theadiabatic
approximation.

Expansion~10! limits us to initial conditions less than
l0

1/2. Figure 1 depicts thet dependence of the dominant pa
x(0) of the analytic solution~dashed line! along with the
result of the integration of Eq.~6! with a typical initial con-
dition x(0),l0

1/2 ~full lines! and an initial condition~dots!
matching expansion~10!. The agreement is very satisfacto
except for a short initial layer for the case of unmatch
initial conditions. This layer depends very weakly one and is
essentially determined by the value ofl0 .

FIG. 2. As in Fig. 1 but for initial conditionsx(0).l0 . Domi-
nant part of the solutionx(0) ~dashed line!; exact solution of the
linearized equation~12! for the excess variablez with x5z1l0

1/2

~dotted line!; and numerical solution of Eq.~6! ~full line!. Initial
conditionx(0)51.05.
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To treat initial conditions slightly larger thanl0
1/2 it is

convenient to express Eq.~6! in terms of the excess variabl
z5x2l0

1/2. One obtains

dz

dt
5«l0

1/2t1~«t22l0!z23l0
1/2z22z3. ~12!

We notice that in this representation the ramp is no lon
purely multiplicative as in Eq.~6!, but gives rise to an addi
tive contribution as well.

Starting with z positive but close to zero, owing to th
stability of the ‘‘ghost’’ statez50 in the limit «→0, one
expects for short times a tendency to decrease from this
tial state, in order to reachz50 ~or x5l0

1/2!. Sooner or later,
however, this transient crosses over with the dominant
of the perturbative solutionx(0), and follows thereafter the
same type of evolution as in Fig. 1. The dynamics prior
the crossover can be analyzed from the linearized part of
~12!, whose exact solution is easily found to be

z~0!5expS t2

2« DexpS 2
2l0

2

« D H z~0!1A p

2« FerfS t

A2«
D

2erfS 2
2l0

A2«
D G2l0

1/2FexpS 2
t2

2« D2expS 2l0
2

« D G J ,

~13a!

with

FIG. 3. As in Fig. 1 but for initial conditionsx(0) close to zero.
Dominant part of solution,x(0) ~dashed line!; solution of the linear-
ized equation~14! ~dotted line!; and numerical solution of Eq.~6!
~full line! with x(0)50.01. Parameter valuesl051 ~a!, l0521
~b!.
r

i-

rt

q.

t5«t22l0 . ~13b!

In Fig. 2 this solution~dots! is depicted, along with the
result of the integration of Eq.~6!, with the same initial
condition~full line! and the dominant part of the perturbativ
expansionx(0) ~dashed line!. The evolution is in full agree-
ment with the previously drawn qualitative picture. Th
crossover time is essentially the time it takes to reach
minimum. For a given initial condition it diminishe
~weakly! as e is increased. We do not further address t
extension of the perturbative approach itself to match
initial condition, as this type of problem has been analyzed
depth in Ref.@5#.

B. Initial conditions near x0Ä0

Consider for concreteness, and without loss of genera
a positive initial condition. Forl0.0, owing to the instabil-
ity of the ghost statex050 in the limit «→0, one expects as
before, for short times, a tendency to evolve towardl0

1/2,
which will entail in the present case an increase of the ini
value ofx. This initial tendency can be determined from th
linearized version of Eq.~6!, whose solution reads

x~ t !5x~0!expF S l0t1
«t2

2 D G . ~14!

Eventually this transient will cross over withx(0) and follow
thereafter the characteristic square-root-in-t evolution of Fig.
1. The crossover timet* can be estimated by the relation

~l01«t* !1/2'x~0!expF S l0t* 1«
t* 2

2 D G . ~15!

In Fig. 3~a! the early time evolution given by Eq.~14! is
plotted in dots along with the numerical solution of the fu
nonlinear equation~6! ~full lines! and x(0) ~dashed lines!.
The results corroborate the above qualitative picture, incl
ing the estimate of the crossover time, Eq.~15!.

Figure 3~b! depicts the result of the numerical integratio
of Eq. ~6! for l0,0 ~full line! along with those of Eq.~14!
~dots! andx(0) ~dashed lines!. The unexpected feature is th
extra delay, first discovered by Erneux and Mandel@5#, dur-
ing which the system stays in the vicinity ofx050 before
jumping, superexponentially, towardx(0). The delay time
corresponds to the time necessary to build a positive ex

FIG. 4. Snapshots of the potentialU(x,t) corresponding to Eq.
~6!. Parameter values as in Fig. 1.
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nent in Eq. ~14!, and is thus given bytd'2ul0u/«. The
crossover timet* is still given by Eq.~15!, the difference
t* 2td being the duration of the jump.

III. STOCHASTIC DYNAMICS IN THE PRESENCE
OF A RAMP

We come now to the main objective of our study, name
to analyze the dynamics of the fluctuations in the presenc
the ramp@Eq. ~5!#. This amounts to augmenting Eq.~6! with
a noise term subject to conditions~1b!,

dx

dt
52

]U~x,t !

]x
1F~ t !, ~16!

whereU(x,t) is the extended form of the kinetic potenti
accounting for the ramp

U~x,t !52~l01«t !
x2

2
1

x4

4
. ~17!

The probability densityp(x,t) satisfies then the augmente
Fokker-Planck equation

]p

]t
52

]

]x
@~l01«t !x2x3#p1

q2

2

]2p

]x2 . ~18!

An elegant analysis of the various stages of the trans
behavior of the probability densityp(x,t) in the absence o
ramp has been developed by Suzuki@10#. Rather than try to
extend Suzuki’s approach when a ramp is introduced,
here limit the scope of our study to the long time regime
which the only relevant process is the transfer of probabi
mass across the potential barrier.

We first study the structure of the potentialU(x,t). We
still have three extrema, just as in the case«50 @Eq. ~4a!#,
two of which depend now ont:

x050,
~19a!

x656Al01«t.

Notice thatx6 is just the partx(0) of the solution of the
deterministic equation referred to in Sec. 2 as the adiab
approximation.

The corresponding values of the potential are

U~0!50,
~19b!

U6~ t !52 1
4 ~l01«t !2,

leading to a potential barrier

DU6~ t !5 1
4 ~l01«t !2. ~19c!

Figure 4 depicts two snapshots ofU(x,t) for t50 and t
.0. We observe that as time grows the minima move aw
from x050 and become, at the same time, deeper. If
noise strengthq2 is reasonably small one may therefore e
pect that in the regime of long times and in the spirit
Kramers’s approach@Eqs. ~3! and ~4!#, p(x,t) will essen-
tially be given by two local Gaussians centered onx6(t),
whose weightsN6(t) will be slowly varying as a result o
,
of

nt

e

y

tic

y
e
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f

the transitions across the barrier. We are thus led to the
chastic version of the adiabatic approximation@1,11#,

p~x,t !5N2~ t !f2~x,t !1N1~ t !f1~x,t !. ~20a!

The form of f6 is obtained by expandingU(x,t) around
x6 , keeping only the first nontrivial~here quadratic! term,

f65A2~l01«t !

pq2 expF2
2~l01«t !$x2@6~l01«t !#%2

q2 G ,
~20b!

showing that, as time goes on,f6 becomes increasingly nar
rower around its extremum6(l01«t).

FIG. 5. Probability distribution in the limit of long times ob
tained numerically from Eq.~18! with l051, e51024, and q2

50.12 ~a!; q250.08 ~b!; andq250.06 ~c!.



n
ie

a
th

-
te

his

in

ion
m
de-

be
so-

-

w

b-

PRE 62 201PASSAGE THROUGH A BARRIER WITH A SLOWLY . . .
We turn next to the dynamics of the weightsN6(t),
which carry the interesting information concerning the tra
sitions across the barrier. In order to disentangle the trans
behavior from an initial state favoringx1 or x2 , from the
equipartition case in which the two quasiattraction basins
given the same probability mass and hence there is no fur
evolution, we set

N6~ t !5 1
2 6dN~ t !. ~21!

The excess probability massdN(t) obeys then, in the adia
batic approximation to which our study is limited, the ra
equation@1,11#

FIG. 6. Time evolution of the probability masses around the t
basinsN1 ~full line! andN2 ~dashed line! as obtained numerically
from Eq. ~18! with initial condition N1(0)51, N2(0)50. Empty
circles correspond to the analytical result, Eq.~24!. Parameter val-
ues as in Fig. 5.
-
nt

re
er

dd N

dt
52

1

t~ t !
dN, ~22!

where t(t) is formally given by Eq.~3!, in which U, DU
now account for the presence of the ramp. Combining t
with Eqs.~19!, one thus gets

t21~ t !'
&

p
~l01«t !e2@~l01«t !2/2q2#. ~23!

Equation~22!, when subject to expression~23! for t, can
be integrated exactly, yielding

dN~ t !5dN~0!expH 2
&

p

q2

« FexpS 2
l0

2

2q2D
2expS 2

~l01«t !2

2q2 D G J . ~24!

In the limit «→0, differentiating the second exponential
the overall exponent with respect to« and setting«50 one
obtains~as one should! the classical Kramers result, Eq.~3!.
More unexpected is the fact that in the limitt@1/« this same
exponential tends toward zero and one obtains

lim
t→`

dN~ t ![dN`5dN~0!expF2
&

p

q2

«
expS 2

l0
2

2q2D G .
~25!

In other words, contrary to the Kramers case, equipartit
~translated bydN→0! is not always achieved: the syste
may remain blocked in one of the quasiattraction basins,
pending on its initial preparation.

IV. NUMERICAL EXPERIMENTS

The results reported in the preceding section will now
confronted and complemented by those of the numerical
lution of the Fokker-Planck equation~18! and the stochastic
simulation of the Langevin equation~16!.

Figures 5~a!–5~c! depict the numerically computed prob

o

FIG. 7. Sensitivity of the asymptotic value of the excess pro
ability massdN` on the noise strengthq2 and on the rate of the
rampe as obtained from Eq.~25!. Parameter valuesl051 and an
initial probability distribution peaked on one basin,dN(0)50.5.
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ability distribution from Eq.~18! in the limit of long times,
using the method developed in Ref.@12#, for «51024 and
for three different values of the noise strengthq2. In addition
to the equipartition result of Fig. 5~a!, which according to
classical Kramers theory should be the only one to preva
the limit of long times for systems possessing a symme
potentialU aroundx50, we observe situations where the
is a marked imbalance between the probability masses in
two quasiattraction basins@Fig. 5~b!#, or even an almos
100% selection of one particular basin@Fig. 5~c!#. A differ-
ent view of this result, which is in full agreement with th
conclusions arrived at in the preceding section, is given
Figs. 6~a!–6~c!. In these figures the time evolution of th
probability massesN1(t) and N2(t) inferred from the nu-
merical solution of Eq.~18! are drawn in full and dashe
lines, respectively, for the three sets of parameter value
Fig. 5. The empty circles stand for the numerically evalua
analytic result of Eq.~24! under the same conditions. Th
agreement is quite satisfactory, thereby establishing fir
the existence of frozen regimes in which the transitio
across the barrier are quenched. These regimes are very
sitive to the parametersq2 and«. Indeed, the noise levelq2

necessary to achieve a certain value ofdN` for long times
can be found from Eq.~24!. It reads

q25
1

2

l0
2

WS 2
l0

2

&p« ln a
D , ~26!

FIG. 8. Stochastic trajectory obtained numerically from E
~16!. Parameter valuesl051 and e51023, q250.08 ~a!; e
51024, q250.12 ~b!.
n
ic

he
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d

ly
s
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wherea5dN` /dN(0) and the LambertW functionW(x) is
defined byW(x)exp@W(x)#5x. This is summarized in the
‘‘state diagram’’ of Fig. 7 withdN(0)50.5.

In order to see how the variablex(t) itself evolves in
time, we perform a simulation of the Langevin equation~16!.
Figures 8~a! and 8~b! depict two types ofstochastic trajec-
tory obtained by this simulation. In Fig. 8~a!, corresponding
to parameter valuesl051, «51023, andq250.08, we see
that, starting from an initial condition in one or the oth
quasiattraction basins, the system remains blocked in
basin for all subsequent times, performing no transit
across the barrier whatsoever. The situation is differen
Fig. 8~b!, corresponding to the parameter values of Fig. 5~a!.
Starting initially in the left quasiattraction basin, the syste
intermittently performs a number of transitions across
barrier before eventually getting blocked in the right qua
attraction basin. Realizations in which the blocking appl
to the starting quasiattraction basin have also been obser
In addition to supporting further the conclusions based
Eqs. ~24! and ~25!, these results are also in full agreeme
with the comment made in Sec. III in connection with th
adiabatic approximation~20a!, namely, that as time grow
the system becomes increasingly localized in the immed
vicinity of one of the deterministic solutionsx6(t).

It might seem curious at first sight that the parameter v
ues in Fig. 8~b! correspond to the case referred to in Fig. 5~a!
as ‘‘equipartition.’’ This apparent paradox is resolved by r
alizing that one needs to argue here in an ensemble theo
sense: starting withN initial conditions~N large! in the left
quasiattraction basin, half of the realizations generated
get settled for long times in the right basin in the equipa
tion case. Still, a given realization will eventually becom
blocked on relevant time scales, since the effective bar
will keep increasing compared to the~fixed! value of q2,
thereby bringing the system effectively to the nonequipa
tion regimes of Figs. 5~b!–5~c! and 6~b!–6~c!. Notice that
there can be no question of the equality of time and ensem
averages here, since the system is not stationary.

V. CONCLUSIONS

In this paper, the kinetics of the passage through a bar
in a bistable system undergoing a supercritical pitchfork
furcation has been analyzed, in the presence of a ramp in
parameter controlling the bifurcation. It was shown that t
ramp may considerably affect the distribution of probabil
mass on the two sides of the barrier. An asymptotic expr
sion governing this distribution was derived@Eqs. ~24! and
~25!# and shown to be in excellent agreement with the res
of simulations of the full Fokker-Planck equation associa
with this system.

The possibility of practically freezing a system, upo
minute changes of parameters on a preferred state
quenching at some stage, through the ramp, the transit
across the barrier provides an interesting method of con
of the time evolution of multistable systems. This could be
relevance in, e.g., nonlinear optics and semiconductor ph
ics related problems. The switching from the unstable s
has been studied in great detail in such problems@5,7–9#, but
the long time regime associated with the passage through
barrier had so far not been addressed systematically.

.
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A natural extension of this work is to consider bistab
systems with hysteresis, as well as systems giving rise
periodic or chaotic oscillations. Another interesting situati
to study pertains to the simultaneous presence of a peri
forcing and a ramp. As is well known, under a periodic fo
ing a noisy system is also experiencing a very different d
tribution of probability masses on the two sides of the b
rier, associated with the phenomenon of stochastic reson
@11#. The interaction between this mechanism and the ac
.

er
to

ic
-
-
-
ce
n

of the ramp could open new possibilities for enhancing a
controlling the sensitivity of complex systems toward en
ronmental constraints.
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